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EQUATIONS OF MOTION OF CONCENTRATED POLYMER SOLUTIONS 

Yu. A. Altukhov and V. N. Pokrovskii UDC 532.135 

We establish a very simple system of controlling equations to describe the 
motion of viscoelastic media. 

i. The problem of the equations of motion of concentrated polymer solutions to describe 
the motion of systems exhibiting viscoelastic properties has not been completely solved; 
there are differences of opinion with regard to the form of the nonlinear controlling equa- 
tion [i]. Since there is no general form of the rheological relation for all viscoelastic 
systems, research is necessary based on structural concepts and relating the nonlinear 
behavior of concentrated solutions to the characteristics of the behavior of macromolecules 
in the system (deformability, kinetic,rigidity,etc.) taken into account in one form or 
another. A simple approach to the description of the motion of concentrated solutions based 
on an analysis of the behavior of dumbbells in a viscous medium is the simplest model of a 
structural element of the system [2]. When internal viscosity is taken into account, the 
controlling relations include the stress tensor aik expressed in terms of the moments of the 
distribution function, and a system of equations for the moments [2], which is generally not 
closed: 

1 [ Tl__~7_( 3 <e,eh>l_[. 
T D 4 ~  " 3 ~,~, ~ j 

(1) 

I. I. Polzunov Altai Polytechnic Institute, Barnaul. Translated from Inzhenerno-Fizi- 
cheskii Zhurnal, Vol. 49, No. 3, pp. 384-390, September, 1985. Original article submitted 
March 21, 1984. 
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dt T D 4~_t / e~e~ ) --  3 "r 

3 ) 2)~ 
4~ <e~e~> + v~<p~p~>~%s<p~p~) - - - -  (P~P~eje~) ?~, , ~-~- ~ 

(2) 

d <e,eh? I (<eie~>_ i. &,, ')+vi, <e~eh> @,,h, <e,e~> --2<eieke~e ~> ?j,. (3) 
dt T m \ 3 i 

We present the equations for the moments of lowest order. Angle brackets denote the average 
over orientations. 

The system given above describes the basic nonlinear effects in the flow of polymers 
[2, 3], and therefore can be used to study polymers under complex deformation conditions. 
However, it remains unclear which element of the moving medium corresponds to the dumbbells. 
Equations (i)-(3) contain parameters which are essentially phenomenological constants whose 
significance and molecular meaning must be refined. 

In the present article we determine the parameters of the system of equations on the 
basis of a detailed model of the behavior of a macromolecule in the system [4], and write 
the equations of motion of concentrated polymer solutions in concrete form. 

2. The equation of the dynamics of a macromolecule which is modeled by a chain of N + i 
Brownian particles moving in a viscoelastic medium, written in normal coordinates in which 
the binding of the particles in the chain is not taken into account, has the form 

S m - -  d2p~ ~v (S) (p~ vijPlV )t-sds %(s)(pi'v miSPiv ) t-sds , ,' v ( 4 )  . . . . .  2T~  avpi + R ~ v ~ i .  
dl ~ 

0 0 

Equation (4) satisfactorily describes [4] the observed distribution of relaxation times 
and the dependence of the linear viscoelasticity of linear polymers on the molecular mass. 
To do this it turned out to be sufficient to assume that microviscoelasticity is charac- 
terized by a single relaxation time m, i.e. 

~ ( s ) = ~ [ 2 6 ( s ) +  BT exp(--s/~)], % ( s ) - - ~  exp(--s/T). 

We note that in the case under consideration the "internal" viscosity of a macromolecule 
is not related to conformational transitions, but to the deformation of the surrounding 
macromolecules, and therefore "internal" and "external" viscoelasticity are characterized 
by a single relaxation time. 

The dynamics of a macromolecule is described in less detail by the average values of 
the moments, for example, the second-order moment, which is given by (4), and has the form 

< P~ P~ ) = 1 _}_ 2 ~ [R exp ( - - s / ~ )  + F exp (--s/~) + G exp (--s/~)] ?~h (t - -  s) ds, 
d 
0 

where we have introduced the notation 

.3_ % = T*k(I@V l - -p ) ,  ~v == T'k(1 --  V1 --p),  ~o = _ _  
V 

= 1 - -  @ B  - I  1 + ~  

o If = 1 - -  % + B -~ 1 + ~  - -  
a,, k ( 1 - - V l - - p )  (+)2{[ ]( 

- -  1 - -  % + B -~ 1 + ~  
~ ,  k (1 ~.- 1/1 - -  p )  

+ 1 - -  _ ~ / V _ . ,  + B - '  1 @q~ 

B k = - - ( 1  + r  p =  
2v2 

x + B-,l 
k (1-[- I l l  - -p)  J 

X + B _ l ]  
k ( l - - V 1  --p)  

p) 

+ 
k ( l + V l - - p )  

4 ve % .~ 

B(1-b~+v2X-~-B-t) 2 ' % = 2B~* " 
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E kp , T* - ~'N2 
= -- i f - ,  v --  2 I f  1 - -  p 4T~x'W' 

2 < L i )  

Thus, a macromolecule is characterized by a set of relaxation times 

x~ = ~*k (I + l T i - -  p), zV -= T*k (1--  V 1 - p), x~ = x*kp,  

w h i c h  f o r  p ~ 1 t a k e s  t h e  fo rm 
1 

�9 ~ = 2~*k (1 - -p /4) ,  T~ = - - ~ * k p ,  x ~ = x*kp.  
2 ~' 

A characteristic feature of the relaxation spectrum obtained is its resolution into a 
group of short and a group of long times close to one another. 

3. In order to compare the results presented with the results for dumbbells, it is 
necessary to introduce the approximation of a single relaxation time, which can be defined 
as the longest relaxation time of the inertia tensor of a macromolecule: 

N 
I 

< SiSk > - N + I 
v=[ 

We compare this value with the dumbbell moment <OiPk > given by Eq. (2). In the linear ap- 
proximation we find (more details in [2]): 

F 5~ § 3~ 
< PiPn > - -  ~- 4~ ] o~ (;~ + O. J 

exp (--F/'TI~ ?~h (t --  y) dg-- 

5 ~ (~ + ~) exp ( - -y /~ ' )  exp (---Z/rD~ ?~h (t - -  y - -  z) dzdy. 

0 0 

In order to obtain an expression for the relaxation time, we compare the change in 
quantities relative to their equilibrium values. For oscillating shear flow in which Y ik(t) 
~ exp (-imt), the ratios under consideration can be written in the form 

For the subchain model: 

3 ( SiSh > / < S ~ ) o = 4~t ( 9i9k ) = 6~1~ -~ 2 (f~ + i f i )  z*?~h (t). 

] " E plt~ ~_ p2F p3G 
f x =  N2 1 + (xpl) ~ l + (xpi) ~ ~- 1 +(xp3) 2 ' 

V = I  

N I 2 F 2 ] 6x V p~R p2 jr p3G 
f2 = N ~  ~ 1 + (xpx)' -f- 1 + (xp.,) 2 1 -t- (xp3) ~ ' 

V ~ [  

(5) 

where 

and for dumbbells: 

P l =  2k(1 + ] / 1  - -p ) ;  p., = kp; P3 - 2k(1- -  I/1 - -p ) ,  

o [ I + 3 (0x)  ] 
/gl = 1, .,.~_ (Ox)~( I + 7) ~ ~ 7 (9. 4- ?) i -+-(Ox) ~ ] ' 

( 6 )  
I 3 1 - - ( l + ? ) ( O x ) ~ ]  0ix 1 -? ?- 7 

f2 = 1 -[- (0x)~(1 + y)-~ - i f -  1 -r (0x) "~ 

0 = r  D/T*, y =$./~, x=o)T*.  

For  s low m o t i o n s  we s e p a r a t e  Eqs .  (5 )  and (6 )  a c c o r d i n g  t o  f r e q u e n c y ,  and by e q u a t i n g  t h e  
coefficients of the zero and first powers of x we obtain the relations: 
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N 

6 Z ~- p2F + p3G), N ~ (piP,, -, 
V - - I  

(7) 

N ( 2 )  6 x (8) 

Replacing the summation by an integration, we find for B >> 1 and 

1 -j- ~p 1 -~- ~ 15 

63 7~ ~"~ % + 
1 + ,  - i f  

X<< i: 

(9) 

(10) 

Since ~ ~ 1 for systems of high-molecular-weight polymers, 

i5 v l. (11) 

It was shown in [4] that the approximation of a single relaxation time can be used to 
derive the expression ~ = 2Bx*x, which is X times larger (X ~ i) than the value given by 
(ii). This result shows the inadequacy of the assumption of the correspondence of a dumb- 
bell to a coiled macromolecule. Hence it follows that in the application to the systems 
under study a structural element of the medium being compared with a dumbbell is an appre- 
ciably smaller part of a macromolecule which can be identified with a chain within the 
limits of a characteristic length whose square is ~2 z < L 2 > X. 

4. Thus, for concentrated systems of macromolecules with a high molecular weight, 
the analysis presented makes it possible to specify a concrete form of the controlling 
equations. The relaxation time of thesystemis determined in terms of characteristics 
relating to a macromolecule. The value of the coefficient of internal viscosity 7 remains 
indeterminate: If a structural element of the flow were a coiled macromolecule, 7 ~ i, 
but this is not so, and therefore it is necessary to assume 7 ~ i, since internal visco- 
sity does not play a substantial role on a small scale. In this case the controlling rela- 
tions, Eqs. (1)-(3), are simplified. For 7 = 0 they take the form 

au = -- PS~'-q- 2~ETi' + 3nT ( L2 >~"----Z--" ( 61 ) < P~gJ ) -- -=---~5~j , ( 1 2 )  

__( 1 2 ) d <PiPs> _ 1 (p#j)----~5ij +~'~s(PsPJ> @~'ss<,PsP~> (13) 
dt �9 

The system of equations is closed, which facilitates further analysis. 

For simple shear (v12 a 0) Eqs. (12) and (13) (omitting the term with DE) determine 
the viscosity q and the-difference of the normal stresses: 

a1~ = ~n, ~ = nT i L ~-)T, (14) 

2 
~ , ~  - -  ( ra . -  (r~2 , ( 15  ) nT ( L 2 > 

a 2 ~ - - % a  = O. ( 1 6 )  

In the discussion of the relations obtained it is necessary to take account of the fact 
that the coefficient of friction < of a bead in terms of viscosity depends on a scalar para- 
meter of state of the system of the type of free volume, and consequently depends on the 
secondary stress tensor oij = P6ij. From the definition of the coefficient of viscosity 
(14) we have 
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~1+ _ _ n T < L ~ >  ' ~ _ r - - - [ (G~ j  7pgii). (17) 
T o 1io T0 

The system of controlling equations (12), (13), and (17) is the simplest system which 
follows from current physical concepts of the structure and behavior of polymers, and was 
discussed in [3]. 

We note that by simplifying model (12), (13), (17) we obtain familiar models. Thus, 
if the function f (o44+~ + pgi~) in (17) is constant, Eqs. (12) and (13) describe the Oldroyd 
model. By omitting the noniinear terms in (13) we obtain the Maxwell model, and finally, 
for T ~ 0 we obtain a Newtonian incompressible liquid. In spite of the general agreement 
of the results determined by Eqs. (12), (13),and (17), the experimental data, even for 
some simple cases [3], exhibit a number of effects, for example ae2 - a~3 = 0, which are 
not described by the equations listed above. This shows the necessity of taking account of 
internal viscosity, the hydrodynamic interaction, and the anisotropy of the internal me- 
dium in the model being considered for a more accurate formulation of the rheological rela- 
tions. It should be noted that with the introduction of the indicated corrections, the 
system of equations is not generally closed, as in the case which takes account of inter- 
nal viscosity (cf. Eqs. (I)-(3)). This gives an objective basis for the existence of dif- 
ferent controlling equations based on various approximations for the same polymeric sys- 
tem. However, all models suitable for describing concentrated solutions of linear poly- 
mers must upon simplification reduce to Eqs. (12), (13) and (17). With this understanding, 
the system given above is the basis for the analysis of flows of linear polymers. 

NOTATION 

Oik, stress tensor; p, pressure; 6ik, Kronecker symbol; DE, coefficient of viscosity; 
Vik , velocity gradient tensor; Yik, mik, symmetrized and antisymmetrized velocity gradient 
tensors; n, dumbbell number density; ~, coefficient of friction of Brownian bead-particle 
in viscous fluid; Pi, i-th component of normal coordinate of dumbbell; p?, i-th compe- 

l 
nent of v-th normal coordinate of subchain; el, component of unit vector along ixne connec- 
ting dumbbell beads; ~, coefficient of internal viscosity of dumbbell; t, time; ~:D = 4/ 

8Tu and T' = (~ + ~)~/~, characteristic relaxation times of dumbbell; T, temperature; 2Tp, 
coefficient of elasticity of dumbbell; 2Tp', coefficient of elasticity of subchain; m, 
mass of Brownian bead-particle; =~, eigenvalues of matrix of elastic interaction between 
three neighboring beads in a chain; #~, random force; Ryv, transformation matrix to normal 

�9 1 . "" " " i of coordinates; ~(s) and @u(s), functions characterzzing external and internal vzscos ty 
a macromolecule; <L2>, rms distance between ends of a macromolecule; T, relaxation time 
of viscoelastic medium; ~*, characteristic relaxation time; 8, dimensionless relaxation 
time of dumbbell;z, dimensionless relaxation time of medium; B, measure of increase of coeffi- 
cient of friction of bead as a result of involvement of surrounding macromolecules in the 
motion; E, measure of the "intramolecular" viscosity; ~, measure of the kinetic rigidity of 
subchains; m, frequency of oscillating shear flow; x, dimensionless frequency; y, parameter 
characterizing ratio of internal and external viscosities of dumbbell; (N + i), number of 
subchains modelling a macromolecule; ~(s), delta function; <$2>0, equilibrium value of rms 
radius of gyration tensor of a macromolecule; $, characteristic chain length. 
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